Autocorrelation image processing for shear analysis in weak lensing

Paul Stankus, ORNL

BNL Astro Group Meeting, 3 November 2015

Physics and shear

Cause:

$$\begin{bmatrix} 1 + e1 & e2 \\ e2 & 1 - e1 \end{bmatrix} \begin{pmatrix} x_{\text{Unlens}} \\ y_{\text{Unlens}} \end{pmatrix} = \begin{pmatrix} x_{\text{Observ}} \\ y_{\text{Observ}} \end{pmatrix}$$

 $\begin{cases} e1 \\ e2 \end{cases} = \begin{cases} e \cos (2 \theta) \\ e \sin (2 \theta) \end{cases}$

 $(e1,e2) \leftarrow \rightarrow$ derivatives of gravitational lensing potential

Effect:

$$\begin{bmatrix} 1+e1 & e2 \\ e2 & 1-e1 \end{bmatrix} = -b = a - b$$

$$e = \frac{a-b}{a+b}$$

Life in (e1,e2) space

e = 0.25, 0.5, 0.8

Measure (e1,e2) of galaxy images

 \rightarrow

Estimators of induced gravitational shear

Wish list?

Can we find an image processing technique that will let us

 Push every image toward a known fit-able shape, while still preserving eccentricity information

 Take advantage of the properties of pixel by pixel noise (whiter shade of pale)

Convolutions/Correlations

Two interesting, suggestive mathematical facts:

 Repeated auto-correlation/convolution converges toward a Gaussian, while preserving variance ratios

• Auto-correlation of white noise is a predictable $\delta()$ function

Image processing, first order

Original

Auto - convolution

Auto - correlation

Image processing, first order

Successive autocorrelation

Main Message:

These are easy to fit, requiring a small "model space"

Example: Poor Man's Barred Spiral

A galaxy-like image made from the sum of two Gaussians

Non-elliptical objects have no single, unambiguous intrinsic ellipticity

But all we require is a shear estimator

Shear Estimators

Take any image, and rotate it in many steps from $o-\pi$

Shear each rotated image by the same given amount

A good shear estimator for each image, returns the induced shear when averaged over all rotations

Shear recovery

Each rotated image was sheared by {e1,e2}={0.1,0}, and the circle-averaged shear estimator recovers that

The challenge: noise and PSF

Two true facts:

- (1) Any auto-correlate of an image has the same shear transformation properties as images do
- (2) If an observed image is the convolution of an original and a PSF, then its autocorrelate is the convolution of the original image autocorrelate and the PSF autocorrelate

Original, Second Add PSF and Second autocorrelate rotated & autocorrelate noise sheared S/N = 10000 PSF = 1 pixel

S/N = 100 PSF = 1 pixel

S/N = 30 PSF = 1 pixel

S/N = 20 PSF = 1 pixel

S/N = 15 PSF = 1 pixel

S/N = 10000 PSF = 2 pixel

S/N = 15 PS F = 2 pixel

"Quickie" PSF correction

Black: No PSF applied

Red: PSF applied and corrected

Green: PSF applied but not corrected

Black: No PSF applied

Red: PSF applied and corrected

Green: PSF applied but not corrected

Summary

- In principle the autocorrelate has the same shear transform and PSF properties as an image
- In practice the autocorrelate results in a smooth profile, readily fit-able and preserving ellipticity even in the worst noise conditions
- Excellent noise resistance for shear estimator in absence of PSF
- With "quickie" faux-variance scheme, see very good PSF correction performance right out of the box before any optimizations or corrections

Central "cap" preserves ellipticity

Fitting > Moments

How do we go from an image to measures of (e1,e2) estimators?

Two basic approaches:

Moments: e.g. covariance matrix

- No assumption of detailed galaxy shape
- Bias from clipping in tails
- Bad noise performance, or use weighting (unknown, tricky)

Fitting: with parameterized form

- Works on any piece of image
- Better noise resistance; but potential noise bias
- True shapes unknown; noise effect depends on shape (Great3)

Four experiments:

Using auto-correlation/convolution + fitting technique:

- Look at three very different images with same eccentricity, see how noise performance varies
- Look at noise behavior at high ellipticity
- Using Gaussian images, look at resistance to tail clipping
- Shear an assortment of Gaussians, look at shear recovery on average

E1: Meet our contestants

E1: Meet our contestants

Image processing, second order

Image processing, first order

